/* ****************************************************************************** * * @file adc.c * @brief adc module * @ic TP3102 * * @version 1.0 * @date 2024/03/26 15:00:40 * @author Alex Xu * * Copyright (c) 2013-2099,Tkplusemi Technology Co.,Ltd. * All Rights Reserved * * History: * Revision Date Author Desc * 1.0.0 2022/08/04 Alex build this file ******************************************************************************/ /*_____ I N C L U D E S ____________________________________________________*/ #include "adc.h" #include "system.h" #include "sys_tim.h" #if ADC_ENABLE /******************************************************************************\ Macro definitions \******************************************************************************/ /******************************************************************************\ Variables definitions \******************************************************************************/ idata uint16_t g_VREF_Value = 0; //IREF 系统上电时采集一次。 idata uint16_t Vbat_Adc = 0; idata uint16_t VNTC_Adc = 0; /******************************************************************************\ Functions definitions \******************************************************************************/ /* ******************************************************************************* * void Adc_Init(void) * * Description : ADC Initialization. --- 系统初始化调用。 * * Arguments : * Returns : * Notes : * ******************************************************************************* */ void Adc_Init(void) { #if ADC_CHN_ENABLE SFRADDR = MFP_CTL1; //Set P07 Pinmux As AD4 Function SFRDATA &= 0x3F; SFRDATA |= 0x80; SFRADDR = ADCCS_CTL0; //AD0~AD4 GPIO constant 20uA current source enable. SFRDATA = 0x10; #endif //g_VREF_Value = Vref_AdcValue(); //g_VREF_Value = 311; } #if 1 /* ******************************************************************************* * uint16_t Vref_AdcValue(void) * * Description : Vref Value.获取基准参考电压ADC值。系统上电采集一次。 * * Arguments : NONE * Returns : Iref Value (mA) * Notes : NONE * ******************************************************************************* */ uint16_t Vref_AdcValue(void) { uint8_t index = 0; uint16_t n_Vref_Data = 0; uint16_t n_ADC_Plus = 0; SFRADDR = ADC_CTL0; SFRDATA = 0x8B; //0x8B -- ADC EN; Single mode; ADC CLK divided by 24=460k for( index=0; index<8; index++ ) { ADC_CTL1 = 0x61; //Channel set and Start conversion while(ADC_CTL1 & 0x01); //Wait for conversion complete n_Vref_Data = ADC_DATL; n_Vref_Data |= (uint16_t)(ADC_DATH << 8); n_ADC_Plus += n_Vref_Data; n_Vref_Data = 0; } n_Vref_Data = (n_ADC_Plus / 8); return n_Vref_Data; } /* ******************************************************************************* * uint16_t Vbat_Value(void) * * Description : Vbat Value.获取电池电压。 * * Arguments : NONE * Returns : Vbat Value (mV) * Notes : NONE * ******************************************************************************* */ uint16_t Vbat_Value(void) { uint8_t index = 0; uint16_t n_Vbat_Data = 0; uint16_t n_ADC_Plus = 0; SFRADDR = ADC_CTL0; SFRDATA = 0x8B; //0x8B--ADC EN; Single mode; ADC CLK divided by 24=460k for( index=0; index<8; index++ ) { ADC_CTL1 = 0x51; //Channel set and Start conversion while(ADC_CTL1 & 0x01); //Wait for conversion complete n_Vbat_Data = ADC_DATL; n_Vbat_Data |= (uint16_t)(ADC_DATH << 8); n_ADC_Plus += n_Vbat_Data; #ifdef _DEBUG_ADC printf("Vbat:%d,plus:%d.\r\n",(uint16_t)n_Vbat_Data,(uint16_t)n_ADC_Plus); #endif n_Vbat_Data = 0; } n_Vbat_Data = ( n_ADC_Plus / 4 ); //Vbat采样值为二分压值。 #ifdef _DEBUG_ADC printf("bat_Vbat1:%d.\r\n",(uint16_t)n_Vbat_Data); #endif g_VREF_Value = Vref_AdcValue(); //获取VREF n_Vbat_Data = (uint32_t)(n_Vbat_Data) * VREF / g_VREF_Value; //Vadx = VREF*DATAadx/DATAvref #ifdef _DEBUG_ADC printf("bat,Vbat:%d,vref:%d.\r\n",(uint16_t)n_Vbat_Data, g_VREF_Value); #endif return n_Vbat_Data; } /* ******************************************************************************* * uint16_t ADC_Chn_Value(ADC_CHANNELS_E adc_chn) * * Description : ADC_Chn_Value. ADC0 ~ ADC4。 * Arguments : NONE * Returns : ADC Value (mV) * Notes : NONE * ******************************************************************************* */ #if ADC_CHN_ENABLE uint16_t ADC_Chn_Value(ADC_CHANNELS_E adc_chn) { uint8_t index = 0; uint16_t adc_data = 0; uint16_t adc_plus_data = 0; SFRADDR = ADC_CTL0; SFRDATA = 0x8B; //0x8B--ADC EN; Single mode; ADC CLK divided by 24=460k for(index=0; index<8; index++) { ADC_CTL1 = (adc_chn << 4) | 0x01; //Channel set and Start conversion while(ADC_CTL1 & 0x01); //Wait for conversion complete adc_data = ADC_DATL; //Read low byte first! Lock ADC Value. adc_data |= (uint16_t)(ADC_DATH << 8); adc_plus_data += adc_data; #ifdef _DEBUG_ADC printf("adc4:%d,plus:%d.\r\n",(uint16_t)adc_data,(uint16_t)adc_plus_data); #endif adc_data = 0; } adc_data = adc_plus_data / 8; #ifdef _DEBUG_ADC printf("adc_chn1:%d.\r\n",(uint16_t)adc_data); #endif g_VREF_Value = Vref_AdcValue(); //获取VREF adc_plus_data = (uint32_t)(adc_data) * VREF / g_VREF_Value; //Vadx = VREF*DATAadx/DATAvref #ifdef _DEBUG_ADC printf("Adc,Vadc:%d,Vref:%d.\r\n", (uint16_t)adc_plus_data, (uint16_t)g_VREF_Value); #endif return adc_plus_data; } #endif #else void ADC_Value_Machine(void) { uint8_t i = 0; uint8_t index = 0; uint16_t adc_data[8] = 0; SFRADDR = ADC_CTL0; SFRDATA = 0x83; //0x83--ADC EN; Successive mode; ADC CLK divided by 24=460k for(i=0; i<7; i++) { ADC_CTL1 = (i << 4); //Channel set ADC_CTL1 |= 1; //Start conversion for(index=0; index<8; index++) { while( !(IRQ_FLAG10 & 0x01) ); //Wait for conversion complete IRQ_FLAG10 = 1; //Write 1 to clear adc_data[i] = ADC_DATL; //Read low byte first! adc_data[i] = adc_data[i] + (u16)(ADC_DATH << 8); } ADC_CTL1 &= 0xFE; //Stop conversion IRQ_FLAG10 = 1; //Write 1 to clear--Clear possible flag before stop conversion!!! } g_VREF_Value = adc_data[6] / 8; Vbat_Adc = (uint32_t)(adc_data[5] / 4) * VREF / g_VREF_Value; //Vadx = VREF*DATAadx/DATAvref VNTC_Adc = (uint32_t)(adc_data[4] / 8) * VREF / g_VREF_Value; //Vadx = VREF*DATAadx/DATAvref; } #endif #endif